skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bruillard, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We develop categorical and number-theoretical tools for the classification of super-modular categories. We apply these tools to obtain a partial classification of super-modular categories of rank [Formula: see text]. In particular we find three distinct families of prime categories in rank [Formula: see text] in contrast to the lower rank cases for which there is only one such family. 
    more » « less
  2. null (Ed.)
    We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many modular categories of any fixed rank. Our technical advance is a generalization of the Cauchy theorem in group theory to the context of spherical fusion categories. For a modular category C \mathcal {C} with N = ord ( T ) N= \textrm {ord}(T) , the order of the modular T T -matrix, the Cauchy theorem says that the set of primes dividing the global quantum dimension D 2 D^2 in the Dedekind domain Z [ e 2 π i N ] \mathbb {Z}[e^{\frac {2\pi i}{N}}] is identical to that of N N . 
    more » « less